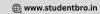

			ES
		8 7 4	
88 V A		36. 7.6	
23. A	- A	100 ME	

Harmonic Progression	$y = A \sin(kx - \omega t + \phi)$			
Acceleration	$a_k = -\omega^2 y$ $(a_k)_{max} = A\omega^2$			
Speed of Wave	$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$			
Speed of Particle	$V_P = A\omega \cos(\omega t + kx)$ $(V_P)_{max} = Akv$ v=speed of wave			
Energy				
$K_{\lambda} = \frac{1}{4} \mu \omega^2 A^2 \lambda$	$U_{\lambda} = \frac{1}{4} \mu \omega^2 A^2 \lambda$			

 $E = K + U = \frac{1}{2}\mu\omega^2A^2\lambda$



Nodes & Antinodes The Wave Equation	Anti-Node Node $\partial^2 y = 1 \ \partial^2 y$			
Intensity	$\frac{\partial}{\partial x^2} = \frac{\partial}{\partial x^2} \frac{\partial}{\partial x^2}$			
$I = 2\pi^2 n^2 A^2 \rho v$	ρ = density of medium v=Wave velocity A=amplitude n=Wave frequency			
Energy Density	$E = \frac{\text{Energy Intensity}}{\text{Energy Velocity}}$ $E = 2\pi^{2}n^{2}a^{2}\rho$			
Velocity of Propagation of Mechanical Waves				
Transverse wave on string	$c = \sqrt{T/m}$			
Transverse ripples on a pond	$c=\sqrt{2\pi\sigma/\rho\lambda}$			
Longitudinal wave on spring	$c = \sqrt{kl/m}$			
Longitudinal wave on a rod	$c = \sqrt{E/\rho}$			
Sound wave in a gas $c = \sqrt{\gamma p/\rho}$				

Speed of non-mechanical				
Electromagnetic wave in				
Vacuum				

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
absolute permeabil

 μ_0 = absolute permeability ϵ_0 = absolute permittivity of air

Speed of Longitudinal Wave in gas

$$v = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{RT}{M}}$$

Speed of Transverse Wave

$$v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{\eta}{\rho}}$$

$$v_x = \sqrt{gx}$$

$$a_{\text{wave}} = \frac{g}{2}$$

$$\frac{2\pi}{\Delta \varphi} = \frac{\lambda}{\Delta x} = \frac{T}{\Delta t}$$

Speed of Transverse Wave

$$v = \sqrt{\frac{P}{\rho}}$$

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

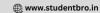
Effect of Temperature on Speed of Sound

 $\mathbf{v_t} = \mathbf{v_0} + 0.61\mathbf{t}$

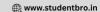
Principal of Superposition of Wave

Two or more progressive waves can travel simultaneously in the medium without effecting the motion of one another

dilotilei					
Equation of Stationary Wave	$y = 2a \sin \frac{2\pi t}{T} \cos \frac{2\pi x}{\lambda}$				
Position of Nodes	$x = \frac{n\lambda}{2}$				
Speed of Sound	Vsound ∝ humidity It depends on T				
Sound level					
l=sound intensity l ₀ =Threshold of hearing	$\beta = 10log\left(\frac{I}{I_0}\right)dB$				
P_0 =Pressure amplitude ρ = density of medium	$I = \frac{P_0^2}{2\rho V}$				






Properties		Reflect		ed		Refracted/ Transmitted	
Velocity	Velocity Same		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Same	
Wavelength		Same		$V = \lambda f(f \text{ is same})$			
Phase from Dense is phase dif of π		liffe	erence No change		change		
Sonometer Wire/Open Organpipe			$f = \frac{nV}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}} = \frac{n}{2L} \sqrt{\frac{\gamma P}{\rho}}$				
1st Harmonic Fundamental Freq.		2nd Harmonic 1st Overtone		C	3rd Harmonic 2nd Overtone		
$f_1 = \frac{V}{2L}$ $f_1 = \frac{V}{2L}$		f ₁ =			$_{1} = \frac{3V}{2L}$		
Closed Organpipe			$f_1 = \frac{(2n-1)V}{4L}$				
n=1 1st Harmonic	Fre	Frequency $f_1 = \frac{V}{4L}$		n=2 3rd Harmonic		onic	1st Overtone $f_1 = \frac{3V}{4L}$
End Correction			$e = \frac{l_2 - 3l_1}{2}$				

Source at rest, observer moves

Towards Observer

Away from Observer

$$f = f_0 \left(\frac{v}{v - v_0} \right)$$

$$f = f_0 \left(\frac{v}{v + v_s} \right)$$

When source and observer both are moving

Both moving in direction of sound

Both moving opposite direction of sound

$$f = f_o \left(\frac{v + v_o}{v + v_s} \right)$$

Both moving towards each other

$$f = f_o \left(\frac{v + v_o}{v - v_s} \right)$$

Both moving opposite to each other

$$f = f_o \left(\frac{v - v_o}{v + v_s} \right)$$

Kundt's Tube

 $\frac{V_{air}}{V_{rod}} = \frac{\lambda_{air}}{\lambda_{rod}} = \frac{l_{air}}{l_{rod}}$

Beats

Arising from interference of waves

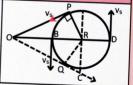
 $f_{heat} = |f_1 - f_2|$

Case 1

Cliff/Wall at rest

$$f' = \left(\frac{v}{v + v_s}\right)f$$

$$f'' = \left(\frac{v}{v - v_s}\right)f$$


Beat frequency

$$f'' - f' = \left(\frac{v}{v - v_s} - \frac{v}{v + v_s}\right) f = \left(\frac{v \times 2v_s}{v^2 - v_s^2}\right) f$$

Case 2

A source of frequency 'f' is resolving in a circle of radius R with speed Vs.

At 'P' frequency is maximum as OP⊥PR, i.e.,

$$f' = \left(\frac{v}{v - v_c}\right) f$$

$$f' = \left(\frac{v}{v - v_s}\right)f \qquad OP = \sqrt{OR^2 - PR^2} = \sqrt{x^2 - R^2}$$

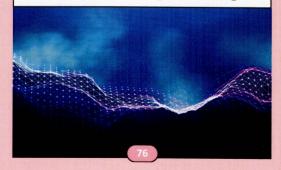
At Q frequency is minimum as OQ⊥QR, i.e.,

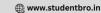
$$f'' = \left(\frac{v}{v + v_s}\right) f$$

$$f_1' = \left(\frac{v - v_0}{v - v_1}\right) f_1$$

$$f_2' = \left(\frac{v + v_0}{v}\right) f_2$$

Case 4





(movable reflecting wall)

Reflected frequency = $\left(\frac{v + v_{\omega}}{v - v_{\omega}}\right) f$

Beat frequency =
$$f\left(\frac{v + v_{\omega}}{v - v_{\omega}} - 1\right) = f\left(\frac{2v_{\omega}}{v - v_{\omega}}\right)$$

